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Abstract

Autonomous exploration is an important topic in robotics, as the uses cases of an
autonomous mobile robot are rapidly expanding. This project uses the quadruped robot
Spot from Boston Dynamics for the autonomous exploration. Spot is already capable
of navigating through prerecorded paths automatically, even in 3D, but autonomous
exploration without human guidance is still not available. Thus, a fully autonomous
exploration system is proposed, built with the robotics framework ROS and Google’s
Cartographer SLAM algorithm. To investigate the aptitude of the system, a real-world
experiment was conducted with two different scenarios. In scenario 1, Spot explores an
empty space, in scenario 2 an obstacle covers part of the test site. For evaluating the
results of the exploration, the maps built with SLAM are compared with ground truth
maps, which were constructed by an accurate 3D model of the test site. To quantify
the error between the built and ground truth map, an error based on the k nearest
neighbour algorithm (NNE), the Structure Similarity Index Measure (SSIM) and the map
coverage were used. In both scenarios, Spot completed the exploration with no frontiers
left to explore. The quality and the coverage of the map were acceptable in both cases,
especially in the first scenario with a map coverage of 99% and almost no NNE.
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CHAPTER 1
Introduction

One of the most important problems of robotics is autonomous navigation. The ability
of a mobile robot to explore its environment without human guidance is highly sought
after in many different use cases such as search and rescue [1] [2], factory inspection [3],
or surveillance [4].

In search and rescue applications robots must navigate through unknown environ-
ments, making the autonomous navigation task an exploration task: the robot has to
simultaneous map the environment, locate itself on the map and calculate collision-free
paths to the next unknown area. The combination of the first two subtasks is called
the SLAM (Simultaneous Localization and Mapping) problem, which is an essential and
highly researched topic in robotics [5] [6], because for the robot to navigate through its
surroundings it first must know the environment and where the robot’s position in this
environment is. After localizing the robot and the obstacles, a collision-free path to a
goal can be computed. The goal is the nearest area where parts of the map are missing,
making the robot explore the environment until no unknown areas are available. This
type of autonomous exploration will be implemented in this project using the robotics
framework ROS [7] and the quadrupedal mobile robot Spot from Boston Dynamics [8],
which is based on the MIT Cheetah robot model [9].

Spot already provides features of autonomous navigation, but it still needs a human
intervention. Specifically, the human operator can teach Spot a new path by manually
teleoperating it. During the teleoperation, the path is recorded, allowing Spot to play
it autonomously [10]. To make Spot fully autonomou, a frontier-based approach for
autonomous exploration is implemented via ROS. The focus of this project is on 2D
indoor environments with LiDAR-based SLAM via Google’s Cartographer [11].
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CHAPTER 2
Related Work

Yamauchi Brian first proposed the frontier-based approach for autonomous exploration
[12]. In his paper, he used a mobile robot fitted with sixteen sonar sensors, sixteen
infrared sensors and one laser rangefinder. The combination of the sonar sensors with
the laser rangefinder enabled better quality in the occupancy grid, as the main problem
with sonar sensors is reflections of the sound pulse that could feed wrong range data.
This was mitigated by the laser-limited sonar system by limiting the maximum range of
the sonar range data by the range data of the laser rangefinder. If the range computed
by the sonar is larger than the range of the laser the sonar range reading is ignored and
the range reading from the laser is taken instead.

With these onboard sensors, an occupancy grid can be constructed. This is done by
mapping the range data onto a cartesian grid. This grid consists of cells, each with a
probability of occupancy. At initialization, each cell has a prior probability of occupancy
and after every new sensor reading the probability of occupancy updates accordingly.

Now that an occupancy grid is constructed with the onboard sensors, the next step
of the frontier-based exploration is to classify the cells of the occupancy grid into three
groups:

• open: the occupancy probability < the prior probability

• unknown: occupancy probability = prior probability

• occupied: occupancy probability > prior probability

After the classification of each cell, frontier edge cells are labeled. These are all open
cells that are adjacent to unknown cells. Adjacent frontier edge cells are then grouped
into frontier edge groups depending on a certain threshold (e.g., the size of the robot). If
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2. Related Work

the size of a frontier edge group is greater than the threshold, a new frontier has been
found. Each centroid of the frontier is now a potential goal for the robot to move to. If
the robot reaches the nearest frontier, it spins 360° to map the environment and marks
the reached frontier as previously visited. If a frontier is unreachable, the frontier is
marked as inaccessible and the robot attempts to move to the nearest reachable frontier.
This procedure continues until all reachable frontiers are visited and no more unexplored
frontiers are available. This system was tested in two real-world office environments,
where the robot successfully mapped its environment autonomous.

With this approach, Yamauchi made considerable improvements to autonomous
exploration techniques. The main advantages over exploration techniques at that time
were that obstacles and walls could be in arbitrary orientations and that it can explore
efficiently by moving to the most likely place to find new map data.

Although this greedy approach of always going to the nearest frontier might seem
inefficient, meaning long trajectories for the mobile robot, Holz et al. [13] found that
even with more sophisticated exploration strategies, the overall path length was not
significantly shorter than the greedy closest frontier algorithm.

To map the unexplored environment, SLAM are often used for autonomous mobile
robots. Yagfarov et al. [14] compared several LiDAR-based SLAM algorithms in ROS
[15] and concluded that Cartographer is one of the most efficient SLAM algorithms for
building 2D maps. To come to that conclusion, they used a Laser Tracker to measure the
ground truth map and compared the occupancy grid obtained through the ROS SLAM
algorithm. They compare Cartogrpapher with Hector [16] in four different conditions:

1. robot slow with smooth rotations

2. robot fast with smooth rotations

3. robot fast with fast rotations

4. robot slow with without loop closure

The map built by Cartographer had the least amount of error compared to the ground
truth in three of the four movement scenarios. Only in the third scenario Hector SLAM
achieved a greater accuracy than Cartographer.
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CHAPTER 3
Design

3.1 ROS (Robot Operating System)
The Robot Operating System (ROS) has been chosen for developing the frontier-based
approach, as it is a widely used framework for robotics in industry and research, providing
multiple tools and already implemented algorithms for navigation and exploration.

3.1.1 Introduction to ROS

ROS [15] [7] uses a peer-to-peer network to exchange and elaborate data, forming the
ROS Computation Graph. Each process in this graph is called a Node. A ROS system
usually consists of multiple nodes working together, forming a modular system at a
fine-grained scale.

Communication between nodes is handled by the Master. The master is responsible
for name registration and lookup in the Computation Graph, enabling the nodes to
communicate with each other. To know what kind of data is passed through this node-
to-node communication ROS uses a strictly typed data structure called Message. Each
message can hold multiple primitive data types (integer, floating point, boolean, etc.),
arrays of primitive data types and even other messages.

There are two types of communication between nodes. Asynchronous and synchronous.
The former is realized with a publish-subscribe model through Topics. When nodes
are publishing messages, they do that to a certain topic, which is defined by a simple
string. Should a node be interested in a certain type of data, they subscribe to a topic
reflecting said data, thus receiving messages corresponding to the topic. The number of
nodes publishing or subscribing to a certain topic is not limited.
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3. Design

Figure 3.1: Node communications in ROS

Synchronous communication with a request/reply interaction is realized with Services,
which are defined by two messages, one for the request and one for the reply, and the
name of the service. If a node wants to invocate a service it has to send a request message
to another node providing said service.

3.1.2 tf (Transform Library)

One of the most important core packages of ROS is the tf [17] library. Its main goal is to
keep track of different coordinate frames and transform data within an entire system.
Furthermore, individual components in the system should be able to query data within a
specific coordinate frame without knowing all coordinate frames at a specific time.

6



3.1. ROS (Robot Operating System)

Figure 3.2: View of all tf frames of Boston Dynamics Spot. Cylinders represent the x, y
and z axes of coordinate frames.

This is accomplished by two modules: The Listener and the Broadcaster. The tf
broadcaster’s goal is to publish coordinate frames and their transforms relative to other
coordinate frames at a specific frequency or if an update is heard by the listener. On
the other hand, the listener receives the transform information, providing a searchable
data structure. This data structure can be described as a tree with nodes as coordinate
frames and edges as transforms. These edges are directional, meaning that if one wants
to move up the tree, the transform must be inversed.
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3. Design

Figure 3.3: tf tree of two turtles showing debugging information [17]

For tf to work, all tf transformable data must have a Stamp. A stamp is comprised
of the coordinate frame in which it is represented and the time in which the data is valid.
Should an algorithm now want to know the transform from the coordinate frame of the
stamped data to the coordinate frame relevant for the algorithm at a specific time, the
tf library can be called. The listener will now try to compute the transform between
the source and the target frame by forming a spanning set. This is done by walking
up the tf tree edges until a common parent is found. If a common parent is found the
listener computes the transformation between the source and target frame. If an edge
must be traversed in the opposite direction the transform has to be inversed, otherwise
the transform from one frame to the other is simply applied.

3.2 Navigation Stack
The Navigation Stack is a ROS package that includes several functionalities for navigating
a mobile robot [18] [19]. This section will briefly explain the core functionalities of the
navigation stack and relate it to the used methods of this project and is based on [18]
[19]. Figure 3.4 is a general overview of the nodes working in a ROS system using the
navigation stack.
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3.2. Navigation Stack

Figure 3.4: Overview of the ROS Navigation Stack [19]

3.2.1 SLAM (Simultaneous Localization and Mapping)

One of the most important tasks for autonomous mobile robots is to locate themselves
within their environment. To explore unknown areas autonomously a robot has to create
a map, localizing itself in it. This problem is called the SLAM (Simultaneous Localization
and Mapping) problem [5]. The main advantage of SLAM is that mobile robots don’t
have to know predefined maps, also called static maps, to navigate through space, making
it much more independent of a priori knowledge of the environment.

ROS supports multiple implementations of SLAM algorithms and this project uses
Cartographer [11]. Details of the Cartographers SLAM algorithm will be discussed in
Chapter 4.

3.2.2 Sensors and Costmaps

The Navigation Stack needs several sensors to function properly. As depicted in Figure 3.4,
sensor sources from range finding sensors are needed to build local- and global costmaps,
as the range data clears or marks obstacles in costmap [20]. These messages can either
be 2D LaserScan messages or 3D PointCloud messages. Costmaps are grid-based maps
that contain 2D information about obstacles in the environment. There are two different
types of costmaps:

• local costmap: Costmap of the environment close to the robot. The costmap
moves with the robot, thus making the map a scrolling window.

• global costmap: Costmap of the whole mapped environment.
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3. Design

Each cell in these maps has a certain cost associated with it, with obstacle cells having
high cost and free cells having zero cost. To make sure robots don’t come too close to
obstacles, an inflation radius around the obstacles is added, giving cells near obstacles a
higher cost than free space. The main goal now is to feed path planners the information
of these costmaps so they can plan a path with the least amount of cost, thus avoiding
obstacles.

3.2.3 Path planners

Like costmaps, path planners are also divided into local- and global path planners. The
global planner is responsible for planning a path using the given global costmap provided
by the Navigation Stack (more specifically provided by the move_base package of ROS).
The goal of the global planner is to find the path with the least amount of cost. On the
other hand, the local path planner relies only on information of the local costmap, which
it extends only a few meters ahead of the robot. During the movement phase, it allows
the robot to avoid unexpected obstacles. Consequently, the local planner’s main job is
to compute local paths with the fewest cost relative to the global path while dynamic
obstacles could be inserted into the robot’s global trajectory. In Figure 3.5 a global and
local path planner’s trajectory can be seen.

Figure 3.5: Global and local paths of the move_base package in ROS visualized in rviz.
The local path is visualized in red, the global path in green.
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3.3. System Overview

3.3 System Overview

3.3.1 Hardware and Software

This project uses the Boston Dynamics Spot robot with the additional EAP (Enhanced
Autonomy Payload) [21]. This additional payload consists of: (i) an additional Personal
Computer (PC) (SpotCORE), mounted on top of Spot which is connected via ethernet
to the internal PC of Spot, allowing for low-latency and high-bandwidth connection, and
(ii) a 3D LiDAR sensor composed of 16 channels with a range of 100m [21]. Spot has the
following on-board sensors [22]: black and white fisheye camera, 5 different depth-infrared
cameras (range 4m): front-left, front-right, left, right, back. With these sensors, the
overall field of view is 360°.

Component Configuration
CPU Intel Core i5-8365UE
RAM 16 GB DDR4 2666
Software Configuration
OS Ubuntu 18.04 LTS
ROS Melodic Morenia

Table 3.1: Hardware and Software specification of the SpotCORE [23]

SpotCORE is used as the ROS PC which communicates directly with Spot through
the ROS Wrapper developed by Clearpath Robotics [24]. Through this driver, internal
data from Spot, such as odometry, range data from depth cameras, and range data from
LiDAR, is fed to ROS, so nodes in the ROS Computation Graph can use the information
gathered by the on-board sensors and the EAP from Spot. Figure 3.7 visualizes the used
system architecture of the ROS system.

Figure 3.6: Spot with the EAP. Consists of a VLP-16 3D LiDAR and Edge CPU.
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3. Design

Figure 3.7: Abstract overview of the ROS System used for autonomous exploration.

3.3.2 Robot visualization

The Spot driver from Clearpath Robotics [24] comes with a package for visualizing the
robot model in rviz, a visualization tool for ROS. An URDF (Unified Robot Description
Format) file is provided with 3D meshes that can be displayed in rviz, see Figure 3.8.

Figure 3.8: Visualization of Spot in rviz.
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CHAPTER 4
Implementation

4.1 SLAM (Simultaneous Localization and Mapping)
In this system, the ROS wrapper for Google’s Cartographer [25] [26] is used. Because
3D SLAM will be tested in the future and Cartographer provides both 2D and 3D
SLAM, Cartographer was chosen as the SLAM algorithm. To tackle the SLAM problem,
Cartographer uses two subsystems: local SLAM (also called frontend or local trajectory
builder) and global SLAM (also called backend). This section will detail Cartographer,
explaining its mapping and localization approaches.

4.1.1 Local SLAM

The main job of the local SLAM is to build submaps, which are partial chunks of the
environment. This is done by scan matching consecutive scans of laser range data, for
example from LiDAR sensors. Submaps take the form of probability grids, which are
comparable to occupancy grids as mentioned in Chapter 2, where each grid cells has a
certain probability of being obstructed/occupied.

Let’s assume a new scan S is taken and the robot is currently moving in the submap
M . The local SLAM is now trying to match the scan points PS ∈ R2 of S to the points
PM ∈ R2 of the submap M . The goal of this scan matching is to find the pose ξ of
the scan frame, which consists of (x, y) coordinates and a rotation angle θ. This can
be done by finding the transformation Tξ, which transforms all PS from the scan frame
into the submap frame. Cartographer uses a Ceres-based [27] scan matcher to find this
transformation, by transforming the scan points such that the probability of the scan
points in the submap is maximized. If a reasonably good transformation and thus the
pose ξ of the scan is found, the scan is inserted into the submap. The drawback is that
the error of the local SLAM increases as the number of scans increases. This issue is
mitigated by the global SLAM with loop closure.

13



4. Implementation

4.1.2 Global SLAM

Now that multiple submaps are inserted into the map, the next goal is to properly align
all of them to form a coherent global map. This is done by the backend or global SLAM
in Cartographer. The poses of all scans with their scan points are saved in nodes, building
a pose graph, where edges are constraints between nodes. Cartographer then optimizes
this graph by applying a Sparse Pose Adjustment (SPA) [28].

The main idea of the global SLAM is to find previous nodes or submaps that are
eligible for loop closure, meaning that a certain part of the environment was already
visited and should now connect to the rest of the built map. To find these connections, a
scan matcher specifically designed for real-time loop closure with a Branch and bound
mechanism is used. If a proper match is found, the optimization of the pose graph
starts, resulting in rearranging the poses of submaps. In Figure 4.1 a visualization
of the loop closure can be observed. The error of the local SLAM was mitigated by
revisiting the oval-shaped room, causing all submaps to the left of the blue arrow to
rotate counterclockwise.

(a) Before (b) After

Figure 4.1: Visualization of (a) before and (b) after loop closure in Cartographer. [29]

Given that Cartographer knows where the different scans were taken in a submap
and the robot knows where the origin of the LiDAR is, the transform between the robot’s
body coordinate frame and the world coordinate frame can be published to tf, see
Figure 4.2.

14



4.2. Navigation Stack

Figure 4.2: The tf link between the body frame and the map frame.

4.2 Navigation Stack
The tuning of the ROS Navigation Stack is crucial for a good performance of autonomous
exploration for mobile robots. Zheng et al. [30] proposed a certain methodology to find
the optimal configurations for several parts of the Navigation Stack such as path planners
and costmaps.

4.2.1 Map

The map built by Cartographer is published in the form of OccupancyGrid [31] [11],
where the values of probabilities range from [0, 100] and unknown cells are equal to −1.
The laser range data in form of a PointCloud2 message is fed into Cartographer. The
range of the Velodyne VLP-16 LiDAR is 100m, but to limit the computational load
the maximum range Cartographer considers is set to 10m. Furthermore, the maximum
height of the scan points is set to 0.6m as the points above are not important for Spot to
move in 2D, consequently improving SLAM performance. See Figure 4.3 for the different
laser range data that is used in this system.

4.2.2 Costmaps

In ROS the costmap_2d package [20] implements the concept of costmaps. The purpose
of costmaps is to enable path planners to plan an obstacle-free trajectory for the robot.
Like the map provided by Cartographer SLAM, costmaps are occupancy grids, where
occupancy is associated with a cost value in the range from [0, 254] where 0 is free
space and 254 an obstacle. [12] The obstacle layer, responsible for marking and clearing
obstacles, in the local costmap is fed with 2D laser range data, as the 3D PointCloud2
data would be a huge overhead for the SpotCORE. This is acceptable because the internal

15



4. Implementation

(a) Untrimmed 3D laser range data from LiDAR

(b) Scan matched points from Cartographer. (c) 2D range data.

Figure 4.3: Different laser range data used in the different components in this system.

collision avoidance of Boston Dynamics Spot performs adequately, making computational
expensive object detection with 3D data would be meaningless.

Figure 4.4: Global path in green, planning through the middle of a doorway with the
global costmap. Cells in pink are obstacles, cyan to blue the inflation radius.

The inflation radius of the inflation layer is configured differently from the global

16



4.2. Navigation Stack

and local costmap as the inflation radius on the global costmap was chosen so the global
path planner chooses a path in the middle between two obstacles as seen in Figure 4.4
compared to the local costmap where a high inflation radius would hinder the robot to
move between narrow openings such as doorways. Thus, a minimal inflation radius was
chosen (0.01m), so the robot can move, even in narrow openings, see Figure 4.5. The
robot would not be able to move through the doorway shown in Figure 4.5a.

(a) Big inflation radius (b) Small inflation radius

Figure 4.5: Comparison between a big inflation radius (a) and a small inflation radius
(b) on a local costmap.

4.2.3 Path Planners

The used global planner for this project is the navfn package [32]. navfn implements
the global path planner using the Dijkstra algorithm. It computes a path with minimal
cost from a starting grid cell to the end grid cell. The default behaviour of this path
planner is that unknown cells are allowed to be traversed, but that would sometimes plan
paths through walls if the costmap has holes in it, see Figure 4.6. Thus, the parameter
allow_unknown is changed to false to avoid this behaviour.

Figure 4.6: Global path planner planning through unknown grid cells.
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4. Implementation

The base_local_planner package [33] implements a local planner using two
approaches. The Trajecory Rollout (TRA) and the Dynamic Window Approach (DWA).
These two algorithms work very similarly in that they score potential trajectories the
robot could take in a certain amount of time and choose the trajectory with the best
score. Since calculating all possible trajectories in the near vicinity of the robot would
be computational unfeasible, only certain velocities (uniformly sampled translational
velocities in x and y and rotational velocity) are simulated for a certain amount of time
(simulation time) which lead to a handful of trajectories that can be scored. Trajectories
that are colliding with obstacles are discarded. The score is dependent on many factors
such as:

• proximity to global path, so the robot does not deviate too much from the global
path

• proximity to goal, so the robot does not overshoot the goal

• proximity to obstacles, so the robot moves not too close to obstacles

Figure 4.7: Trajectory Rollout Approach with simulated trajectories in black, obstacles
in red and the mobile robot in blue. [33]

The difference between the TRA and the DWA is that DWA only considers simulating
the sampled velocities within one simulation step so the robot can safely stop, thus
making DWA theoretically faster as it must score fewer trajectories [34] [33].

18
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However, while testing the local planner with the base_local_planner package,
DWA resulted in significantly poorer performance with Spot, thus the TRA was chosen
instead.

4.3 Frontier Exploration
Once the mapping of the environment and the robot localization are done, as well as the
path computing, the last step for autonomous exploration is to find unexplored areas.
As described in Chapter 2, one way is to find frontiers in the map.

The package explore_lite [35] implements this approach of frontier exploration.
Contrary to other implementations such as frontier_exploration [36], explore_lite
does not create its own costmap, making it more lightweight, thus this package was
chosen over others. The general approach of this algorithm is to first find frontier cells
and them. Then a filter is applied, so frontiers under a certain size get discarded. After
that, a cost of a frontier depending on their distance to the robot (Euclidean distance)
and size of the frontier is computed. The last step is to send the centroid of the frontiers
as goal messages to move_base. If a frontier is unreachable, it gets marked as such
and the next available frontier is chosen as the goal.

To search frontier cells, a BFS (Breadth-first search) is implemented. Starting from
the cell the robot is currently on, a neighbourhood of 4 cells is examined. If a cell is
free (has a value of 0) and was not visited before, it is inserted into a queue. If a cell is
unvisited, has an unknown value associated with it and has at least one free cell adjacent
to it, a BFS from this frontier cell is initiated to find neighbouring frontier cells. This
time, the iteration is over all 8 neighbouring cells. Should the size of the frontier be over
the minimum size limit, the frontier is added to the list of frontiers the robot should
explore. Should the search terminate, the pose of the centroid of the frontier with the
least cost, defined as the difference between the minimal Euclidean distance of the frontier
to the robot and the size of the frontier, is sent to move_base.

The calculation of the centroid of the frontier is used with world coordinates and is
averaged out over the size of the frontier which can result in goals that land on unknown
cells. Furthermore, the algorithm does not adhere to the definition of frontier cells of
[12], where frontier cells must be free cells, thus making the centroid more likely to fall
on unknown cells. As described in Section 4.2.3, the global planner is set so it does
not plan through unknown cells, thus thus limiting this drawback of explore_lite.
Instead of making the centroid of the frontier the goal, the nearest free cell to the centroid
is chosen as the goal of the frontier. This is done via the same 8-neighbourhood BFS
explore_lite uses for finding adjacent frontier cells, but this time the search stops if
a free cell is found.
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4. Implementation

Figure 4.8: Frontiers visualized in rviz. Blue cells indicate the frontiers, green spheres
are the initial found frontier cells and the size is the cost of the frontier, the bigger the
cost the smaller the sphere is.

4.4 ROS System
To get an overview of the ROS Computation Graph used in this project Figure 4.9 shows
the simplified version of it. There are some details hidden for better visibility of the
graph and a better understanding of the system. This section will describe the various
nodes that take part in this graph and explain what topics they subscribe to / publish.

At the start of launching the spot_driver package provided by Clearpath Robotics
[24] it automatically launches a velodyne_node, which is a separate package developed
for Velodyne LiDARs for ROS [37]. The node takes the laser range data from the LiDAR
and converts it into ROS messages and publishes them. It publishes two kinds of topics
/velodyne_points (3D LiDAR data) and /scan (2D LiDAR data), see Figure 4.3
for visualization.

Cartographer then subscribes to the point cloud topic /velodyne_points, the
/odometry topic and to /tf for constructing the map and localizing Spot. If the map
is generated, Cartographer publishes the /map topic in form of an occupancy grid and
publishes the link between the map and body frame of Spot to tf, thus localizing the
robot in the map coordinate frame.
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4.4. ROS System

Figure 4.9: Simplified ROS Computation graph of the system.

Move_base needs to know where the robot is located in the world and what is
occupied in the environment, thus it subscribes to the /tf and /map topic. Fur-
thermore, it needs range data and some general state of motion of the robot for the
base_local_planner, so move_base subscribes to the 2D laser range data topic
/scan and the /odometry topic.

The explore_lite node is responsible for finding frontiers in the map, so it
subscribes to the /map topic. To know when Spot has reached a frontier the location of
the robot has to be known, so it subscribes to the /tf topic. If the node finds frontiers it
publishes them (for visualization) and publishes the /goal topic of the nearest frontier
for move_base, which is a pose, consisting of (x, y) coordinates and a rotation angle θ.
Move_base subscribes to the /goal topic and computes movement commands on an
obstacle-free path and publishes them via the /cmd_vel topic. The /spot_driver
subscribes to the /cmd_vel topic and sends movement commands to Spot.
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CHAPTER 5
Results and Discussion

5.1 Metrics
To evaluate the autonomous exploration of mobile robots, different metrics can be used.
Yan et al. [38] proposed multiple performance metrics for multi-robot exploration, which
also can be used for single-robot exploration. For this project, two different metrics were
used: (i) quality and (ii) completeness of the map. To calculate the completeness of the
map, a comparison with a ground truth map, which is built with the ground floor plan
of the building, is done. Let the built map with SLAM be B and the ground truth map
G. The completeness C of the map is defined as the ratio between the area of B and G:

C = A(B)
A(G)

To define the quality of the map two different metrics are used. Santos et al. [6]
proposed the normalized k nearest-neighbour error (NNE), which computes the
average distance of nearest neighbours of occupied cells between the ground truth and
the built map using the nearest-neighbour approach. This provides a global perceived
error of the map, as the metric is used on the whole map, which is why a second metric is
used to benchmark local structure quality. This type of metric combination was proposed
by [39].

The Structure Similarity Index Measure (SSIM) [40] uses local windows to
compare two images. It calculates the mean intensity of the luminance, the standard
deviation to estimate the contrast and the covariance for the structural comparison of
both images. The result of the comparison is between [−1, 1] with 1 being the most
similar. The value of 1 is only possible if both images are exactly the same. This SSIM
enables for better estimation of local structural similarity in the constructed map by
SLAM, hence it was used besides NNE.
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5. Results and Discussion

5.2 Real World Experiment
To test the autonomous exploration with Spot, a room at the TU Vienna Science Center
was chosen to be the test site. The room was prepared/arranged to create a free walkable
area, see Figure 5.1.

(a) Left Barrier (b) Right barrier

Figure 5.1: Test site at the TU Vienna Science Center with added barriers.

The ground-truth is represented by a 3D model of the room, created by using a
3D software tool. The room sizes have been manually measured. The 3D model was
updated to represent the new barricades set up for the experiment, see Figure 5.2. The
ground truth map is now gathered by making a planar cut of all obstacles resulting in an
occupancy grid, similar to one generated by a SLAM algorithm.

Figure 5.2: The 3D model of the test site.
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5.3. Evaluation Pipeline

Two scenarios were chosen for the autonomous exploration. In scenario 1, the room
was empty. In scenario 2, one obstacle was added into the room to test how Spot reacts
to small obstacles in an empty room, Figure 5.3 shows the ground truth maps of both
scenarios. The experiment is over if no frontiers are left to explore or the last frontiers
are not reachable.

(a) Scenario 1: no obstacles (b) Scenario 2: obstacle in
map

Figure 5.3: Ground truth maps of both scenarios. Black cells are obstacles, white is free
space and gray is unknown space.

5.3 Evaluation Pipeline

Figure 5.4: Evaluation pipeline used in this project. The red walls are the ground truth
map and the blue the built map.

For comparing the ground truth map with the built map several steps must be taken to
obtain accurate results. Firstly, the built map is saved with the map_server package.
Then, a thinning operation with OpenCV [41] on both the ground truth map and the
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5. Results and Discussion

built map is applied, as the width of the walls can vary. After that, the two maps must be
aligned to compute the error metrics. This is done with the ICP (Iterative closest point)
algorithm [42] in MATLAB, which provides an affine transformation that best aligns the
two maps. To compute the NNE, the knnsearch function provided by MATLAB is
used. The NNE is computed by calculating the distances to the nearest neighbour of
all occupied cells in the ground truth map. Then, the mean of the sum of all distances
is taken, resulting in the NNE. The SSIM is calculated with the built-in function of
MATLAB. The input is the two thinned and aligned maps.

To derive the coverage of the built map, the area of all free cells in the built map is
compared to the area of all free cells in the ground truth map. This is done by marking
the area outside the walls as occupied, see Figure 5.5, meaning we have a binarized image
where the function bwarea of MATLAB can be used to estimate the area of the free
space.

(a) Ground truth area in
scenario 1

(b) Built map area in
scenario 1

Figure 5.5: Area of ground truth map (a) and built map (b) with no obstacles.
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5.4. Results

5.4 Results

Type Overlap Area GT Area SLAM

Scenario 1

Scenario 2

Table 5.1: Results of both scenarios. The blue line represents the built map and the red
the ground truth map.

Scenario NNE SSIM Map Coverage
1: no obstacles 0.81 0.89 99.04%

2: obstacles 5.30 0.82 89.04%

Table 5.2: Error metrics and map coverage results for both scenarios. NNE the lower the
better, SSIM value 1 is perfect similarity.

In both scenarios, Spot reached all frontiers with no frontiers left to explore.
The results show a good construction of the map in scenario 1, with a map coverage

of 99.04% and an NNE of 0.81 and an SSIM of 0.89. In contrast to scenario 1, the results
of scenario 2 show a mediocre result as the map is appearing to be compressed in the
y-direction, hence the map coverage is only 89.04% and the NNE is 5.30 while the SSIM
is 0.82. This error potentially happened, because Spot took a different trajectory, caused
by the new frontier behind the obstacle.
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5. Results and Discussion

5.5 Limitations
This system currently only works in 2D. Spot is already capable of moving up and
down stairs but allowing autonomous exploration without a first manual initialization is
currently not available. Furthermore, a lot of ROS packages for navigation are designed
for use in 2D, making it more time-consuming to design an autonomous exploration
system for 3D as several parts must be implemented from scratch.

The LiDAR mounted on Spot is used for mapping the environment. LiDARs have a
huge disadvantage in environments with glass, as the laser pulses emitted by the LiDAR
travel through glass, thus making the laser range data inaccurate and making glass panels
invisible in the occupancy grid. The internal object detection of Spot can’t detect glass
panels either so Spot collides with glass panels if a path goes through a glass panel.

28



CHAPTER 6
Future Work

The next step for using Spot to explore the environment autonomously would be to enable
navigation through 3D. Spot should be able to climb stairs and map its environment
in 3D autonomously. Cartographer [11] was used for 2D SLAM but it also has a mode
for 3D SLAM. In the 3D mode of Cartographer, an IMU (Inertial measurement unit) is
required for helping with building maps. Spot has an internal IMU but the sensor data
is not accessible, so installing an external IMU would be necessary to run 3D SLAM
with Cartographer on Spot. Finding / Implementing ROS navigation and exploration
packages that work in 3D is also the next step for designing a navigation stack that works
in 3D.

As there are no simulation software provided by Boston Dynamics for Spot, one
must either disregard simulating with Spot or try third-party simulation software [43]
[44]. A future first-party simulation software would be really useful, as developers can
test algorithms without needing the physical robot. Furthermore, optimal settings for
the navigation stack can be found by simulating the robot moving through several
environments with different configurations, until the best set of configuations is found.

Currently, the autonomous exploration with Spot is highly dependent on having no
glass panels in the environment, as the LiDAR is not capable of sensing glass panels.
One approach to tackle this problem is to fuse multiple sensors together, where one of
the sensors is capable of sensing glass panels such as ultrasonic sensors. This multi-sensor
fusion was tested by Wei et al. [45]. Alternatively, Wang et al. developed a method
of detecting glass panels based on detecting the specular reflection of laser beams and
modified an existing SLAM method for integration with ROS [46] [47]. A modification to
Cartographer in 2D and 3D or setting up a multi-sensor fusion with sonar sensors would
make Spot able to detect glass, so this step is highly favourable as most buildings have
some sort of glass panels making the autonomous exploration for Spot nearly impossible
without covering all glass panels.
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6. Future Work

The acquired map scanned with the SLAM algorithm is useful for Spot using the
navigation or getting a rough overview of the environment but if one wants to have
high accuracy 3D scans of the environment an extra payload such as a high accuracy
laser scanner should be used. The TU Vienna has purchased a Riegl [48] laser scanner
which can be used to scan accurate point clouds of the environment, and also can be
mounted on Spot. To combine autonomous exploration while simultaneously scanning
the environment in short intervals is the goal of further research.
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CHAPTER 7
Conclusion

This thesis presented a system that allows a mobile robot to autonomously explore its
environment in 2D. Spot, a quadrupedal robot from Boston Dynamics, was used as the
mobile robot, equipped with a 3D LiDAR. The autonomous exploration was implemented
with a frontier-based approach with the open-source robotics framework ROS combined
with Google’s Cartographer SLAM algorithm [11].

To test the system, a real-world experiment was conducted with two different scenarios
at the TU Vienna Science Center. In the first scenario, the lab was empty and in the
second one an obstacle was added in the middle of the free space. The first goal of the
experiment was to verify the effectiveness of the implemented frontier-based exploration.
After reaching all frontiers, the quality and coverage of the built map were examined.
A ground truth map was constructed with a 3D model of the lab and was then used to
compare it to the built map by using two different error metrics NNE and SSIM and the
map coverage.

Spot was able to reach all detected frontiers and map the lab in both scenarios. The
map coverage and quality in both scenarios were acceptable. In the first scenario, SLAM
produced a highly accurate map with almost no NNE and very good map coverage
of almost 100%. The error produced in scenario 2 is potentially due to the different
trajectory Spot took after sensing the frontier behind the object. More research must be
done to come to a better understanding of the impact different trajectories have on the
SLAM algorithm. Furthermore, to enable better loop closure by the SLAM algorithm
the mobile robot should be programmed to return to the starting position after the
exploration is done.
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